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Abstract

The purpose of this paper is to establish a fairly large number of sets of second-order parameter-
free sufficient optimality conditions for a discrete minmax fractional programming problem.
Our effort to accomplish this goal is by utilizing various new classes of generalized second-order
(ϕ, η, ρ, θ,m)-invex functions, which generalize most of the concepts available in the literature.
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1 Introduction

Recently, Verma and Zalmai [26] investigated the second-order parametric necessary optimality con-
straints as well as sufficient optimality constraints for a discrete minmax fractional programming
problem applying generalized second order invex functions. Mathematical fractional programming
problems of this nature with a finite number of variables as well as finite number of constraints
are referred to as generalized fractional programming problems, while mathematical fractional pro-
gramming problems with a finite number of variables and infinitely many constraints are called
semiinfinte fractional programming problems in the literature. These problems, among real-world
applications, have a wide range of significant applications, for example, consider a robot problem.
Then a class of control problems in robotic can be handled by a semi-infinite program, especially
the maneuverability problem (Lopez and Still [9]) for the generalized semi-infinite program. It is
highly probable that among all industries, especially for the automobile industry, the robots are
about to revolutionize the assembly plants forever. That would change the face of other industries
toward technical innovation as well.

On the other hand, just recently Zalmai and Zhang [39] presented a simpler proof to a theorem
of the alternative (Luu and Hung [10]) by using a separation theorem and used Dini and Hadamard
directional derivatives and differentials under Karush-Kuhn-Tucker-type necessary efficiency con-
ditions for a semiinfinite multiobjective optimization problem on a normed linear space. There
exists a large volume of research publications on mathematical programming/ mathematical frac-
tional programming based on using the first derivatives, Dini derivatives, Hadamard derivatives,
F-derivatives, G-derivatives, and second derivatives in the literature, but it would be an opportune
juncture to explore to fractional derivatives to the context of general mathematical programming
problems. For more details on fractional derivatives and their applications, we refer the reader to
Srivastava and Associates [7] - [8]. It is quite remarkable that there are more than one million re-
search publications on fractional differential equations and related applications to other fields alone
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in the literature. Motivated (and greatly impacted) by these research advances and existing scopes
for interdisciplinary research, we consider the following discrete minmax fractional programming
problem:

(P ) Minimize max
1≤i≤p

fi(x)

gi(x)

subject to Gj(x) ≤ 0, j ∈ q, Hk(x) = 0, k ∈ r, x ∈ X,

where X is an open convex subset of Rn (n-dimensional Euclidean space), fi, gi, i ∈ p ≡
{1, 2, . . . , p}, Gj , j ∈ q, and Hk, k ∈ r, are real-valued functions defined on X, and for each
i ∈ p, gi(x) > 0 for all x satisfying the constraints of (P ).

In this paper, we plan to investigate based on the fast developing field of the mathematical
programming, some parameter-free new classes of second-order parameter-free optimality results
using the second-order invex functions. The results established in this paper can further be utilized
for formulating and proving numerous second-order parameter-free duality theorems for the discrete
minmax fractional programming problem (P ). The obtained results are new and encompass most
of the results on generalized invex functions in the literature (including [1]-[6], [11]-[33], [35]-[40]).
Furthermore, our results can (based on Pitea and Postolache [17]) be applied to a new class of
multitime multiobjective variational problems for minimizing a vector of functional of curvilinear
type to the context of the generalized Mond-Weir-Zalmai type quasiinvexity. For more details, we
refer the reader [1]-[40].

The rest of this paper is organized as follows. In the remainder of this section, we recall a few
basic definitions and auxiliary results which will be needed in the sequel. In Section 2, we state
and prove a multiplicity of second-order parameter-free sufficient optimality results for (P ) using a
variety of generalized (ϕ, η, ρ, θ,m)-sonvexity assumptions. Finally, in Section 3, we summarize our
main results and also point out some future research endeavors arising from certain modifications
of the principal problem investigated in the present paper.

Note that all the optimality results established for (P ) are also applicable, when appropriately
specialized, to the following three classes of problems with discrete max, fractional, and conventional
objective functions, which are particular cases of (P ):

(P1) Minimize
x∈F

max
1≤i≤p

fi(x);

(P2) Minimize
x∈F

f1(x)

g1(x)
;

(P3) Minimize
x∈F

f1(x),

where F is the feasible set of (P ), that is,

F = {x ∈ X : Gj(x) ≤ 0, j ∈ q, Hk(x) = 0, k ∈ r}.

We next recall some basic concepts for certain classes of generalized convex functions, introduced
recently in [26], which will be needed in the sequel. We shall refer the ’second-order invex functions’
to as the sonvex functions. Let f : X → R be a twice differentiable function.
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Definition 1.1. The function f is said to be (strictly) (ϕ, η, ρ, θ,m)-sonvex at x∗ if there exist
functions ϕ : R → R, η : X × X → Rn, ρ : X × X → R, and θ : X × X → Rn, and a positive
integer m such that for each x ∈ X (x 6= x∗) and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
(>) ≥ 〈∇f(x∗), η(x, x∗)〉+

1

2
〈z,∇2f(x∗)z〉+ ρ(x, x∗)‖θ(x, x∗)‖m,

where ‖ · ‖ is a norm on Rn.
The function f is said to be (strictly) (ϕ, η, ρ, θ,m)-sonvex on X if it is (strictly) (ϕ, η, ρ, θ,m)-

sonvex at each x∗ ∈ X.

Definition 1.2. The function f is said to be (strictly) (ϕ, η, ρ, θ,m)-pseudosonvex at x∗ if there
exist functions ϕ : R→ R, η : X ×X → Rn, ρ : X ×X → R, and θ : X ×X → Rn, and a positive
integer m such that for each x ∈ X (x 6= x∗) and z ∈ Rn,

〈∇f(x∗), η(x, x∗)〉+
1

2
〈z,∇2f(x∗)z〉 ≥ −ρ(x, x∗)‖θ(x, x∗)‖m ⇒ ϕ

(
f(x)− f(x∗)

)
(>) ≥ 0,

equivalently,

ϕ
(
f(x)− f(x∗)

)
(≤) < 0⇒ 〈∇f(x∗), η(x, x∗)〉+

1

2
〈z,∇2f(x∗)z〉 < −ρ(x, x∗)‖θ(x, x∗)‖m.

The function f is said to be (strictly) (ϕ, η, ρ, θ,m)-pseudosonvex on X if it is (strictly)
(ϕ, η, ρ, θ,m)-pseudosonvex at each x∗ ∈ X.

Definition 1.3. The function f is said to be prestrictly (ϕ, η, ρ, θ,m)-pseudosonvex at x∗ if there
exist functions ϕ : R→ R, η : X ×X → Rn, ρ : X ×X → R, and θ : X ×X → Rn, and a positive
integer m such that for each x ∈ X (x 6= x∗) and z ∈ Rn,

〈∇f(x∗), η(x, x∗)〉+
1

2
〈z,∇2f(x∗)z〉 > −ρ(x, x∗)‖θ(x, x∗)‖m ⇒ ϕ

(
f(x)− f(x∗)

)
≥ 0,

equivalently,

ϕ
(
f(x)− f(x∗)

)
< 0⇒ 〈∇f(x∗), η(x, x∗)〉+

1

2
〈z,∇2f(x∗)z〉 ≤ −ρ(x, x∗)‖θ(x, x∗)‖m.

The function f is said to be prestrictly (ϕ, η, ρ, θ,m)-pseudosonvex on X if it is prestrictly
(ϕ, η, ρ, θ,m)-pseudosonvex at each x∗ ∈ X.

Definition 1.4. The function f is said to be (prestrictly) (ϕ, η, ρ, θ,m)-quasisonvex at x∗ if there
exist functions ϕ : R→ R, η : X ×X → Rn, ρ : X ×X → R, and θ : X ×X → Rn, and a positive
integer m such that for each x ∈ X and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
(<) ≤ 0 ⇒ 〈∇f(x∗), η(x, x∗)〉+

1

2
〈z,∇2f(x∗)z〉 ≤ −ρ(x, x∗)‖θ(x, x∗)‖m,

equivalently,

〈∇f(x∗), η(x, x∗)〉+
1

2
〈z,∇2f(x∗)z〉 > −ρ(x, x∗)‖θ(x, x∗)‖m ⇒ ϕ

(
f(x)− f(x∗)

)
(≥) > 0.

The function f is said to be (prestrictly) (ϕ, η, ρ, θ,m)-quasisonvex on X if it is (prestrictly)
(ϕ, η, ρ, θ,m)-quasisonvex at each x∗ ∈ X.
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Definition 1.5. The function f is said to be strictly (ϕ, η, ρ, θ,m)-quasisonvex at x∗ if there exist
functions ϕ : R → R, η : X × X → Rn, ρ : X × X → R, and θ : X × X → Rn, and a positive
integer m such that for each x ∈ X and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
≤ 0 ⇒ 〈∇f(x∗), η(x, x∗)〉+

1

2
〈z,∇2f(x∗)z〉 < −ρ(x, x∗)‖θ(x, x∗)‖m,

equivalently,

〈∇f(x∗), η(x, x∗)〉+
1

2
〈z,∇2f(x∗)z〉 ≥ −ρ(x, x∗)‖θ(x, x∗)‖m ⇒ ϕ

(
f(x)− f(x∗)

)
> 0.

The function f is said to be strictly (ϕ, η, ρ, θ,m)-quasisonvex on X if it is strictly (ϕ, η, ρ, θ,m)-
quasisonvex at each x∗ ∈ X.

From the above definitions it is clear that if f is (ϕ, η, ρ, θ,m)-sonvex at x∗, then it is both
(ϕ, η, ρ, θ,m)-pseudosonvex and (ϕ, η, ρ, θ,m)-quasisonvex at x∗, if f is (ϕ, η, ρ, θ,m)-quasisonvex
at x∗, then it is prestrictly (ϕ, η, ρ, θ,m)-quasisonvex at x∗, and if f is strictly (ϕ, η, ρ, θ,m)-
pseudosonvex at x∗, then it is (ϕ, η, ρ, θ,m)-quasisonvex at x∗.

In the proofs of the duality theorems, sometimes it may be more convenient to use certain
alternative but equivalent forms of the above definitions. These are obtained by considering the
contrapositive statements. Note that the new classes of generalized convex functions specified in
Definitions 1.1 - 1.3 contain a variety of special cases that can easily be identified by appropriate
choices of ϕ, η, ρ, θ, and m.

We conclude this section by recalling a set of second-order parameter-free necessary optimality
conditions for (P ) from the publication [26]. This following result is obtained from Theorem 3.1 of
[26] by eliminating the parameter λ∗ and redefining the Lagrange multipliers.

Theorem 1.6. [26] Let x∗ be an optimal solution of (P) and assume that the functions fi, gi, i ∈
p, Gj , j ∈ q, and Hk, k ∈ r, are twice continuously differentiable at x∗, and that the second-order
Guignard constraint qualification holds at x∗. Then for each z∗ ∈ C(x∗), there exist u∗ ∈ U ≡
{u ∈ Rp : u ≥ 0,

∑p
i=1 ui = 1}, v∗ ∈ Rq+ ≡ {v ∈ Rq : v ≥ 0}, and w∗ ∈ Rr such that

p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)] +

q∑
j=1

v∗j∇Gj(x∗) +
r∑

k=1

w∗k∇Hk(x∗) = 0,

〈
z∗,
{ p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)]

+

q∑
j=1

v∗j∇2Gj(x
∗) +

r∑
k=1

w∗k∇2Hk(x∗)
}
z∗
〉
≥ 0,

u∗i [D(x∗, u∗)fi(x
∗)−N(x∗, u∗)gi(x

∗)] = 0, i ∈ p,

max
1≤i≤p

fi(x
∗)

gi(x∗)
=
N(x∗, u∗)

D(x∗, u∗)
,
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Higher-order parameter-free sufficient optimality conditions ... 215

v∗jGj(x
∗) = 0, j ∈ q,

where C(x∗) is the set of all critical directions of (P) at x∗, that is,

C(x∗) = {z ∈ Rn : 〈∇fi(x∗)− λ∇gi(x∗), z〉 = 0, i ∈ A(x∗), 〈∇Gj(x∗), z〉 ≤ 0, j ∈ B(x∗),

〈∇Hk(x∗), z〉 = 0, k ∈ r},

A(x∗) = {j ∈ p : fj(x
∗)/gj(x

∗) = max
1≤i≤p

fi(x
∗)/gi(x

∗)},

B(x∗) = {j ∈ q : Gj(x
∗) = 0},

N(x∗, u∗) =
∑p
i=1 u

∗
i fi(x

∗),
and
D(x∗, u∗) =

∑p
i=1 u

∗
i gi(x

∗).

For brevity, we shall henceforth refer to x∗ as a normal optimal solution of (P ) if it is an optimal
solution and satisfies the second-order Guignard constraint qualification.

The form and features of this optimality result will provide clear guidelines for formulating
numerous second-order parameter-free sufficient optimality conditions for (P ).

2 Sufficient optimality conditions

In this section, we present a fairly large number of second-order parameter-free sufficiency results
in which various generalized (ϕ, η, ρ, θ,m)-sonvexity assumptions are imposed on the individual as
well as certain combinations of the problem functions.

For the sake of the compactness of expressions, we shall use the following list of symbols during
the statements and proofs of our sufficiency theorems:

D(x, u) =

p∑
i=1

uigi(x),

N(x, u) =

p∑
i=1

uifi(x),

C(x, v) =

q∑
j=1

vjGj(x),

Dk(x,w) = wkHk(x), k ∈ r,

D(x,w) =
r∑

k=1

wkHk(x),

Ei(x, y, u, λ) = D(y, u)fi(x)−N(y, u)gi(x), i ∈ p,

E(x, y, u, λ) =

p∑
i=1

ui[D(y, u)fi(x)−N(y, u)gi(x)],

G(x, v, w) =

q∑
j=1

vjGj(x) +
r∑

k=1

wkHk(x),
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I+(u) = {i ∈ p : ui > 0}, J+(v) = {j ∈ q : vj > 0}, K∗(w) = {k ∈ r : wk 6= 0}.

In the proofs of our sufficiency theorems, we shall make frequent use of the following auxiliary
result which provides an alternative expression for the objective function of (P ).

Lemma 2.1. [26] For each x ∈ X,

ϕ(x) ≡ max
1≤i≤p

fi(x)

gi(x)
= max

u∈U

∑p
i=1 uifi(x)∑p
i=1 uigi(x)

.

Theorem 2.2. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r,
are twice differentiable at x∗, and that for each z∗ ∈ C(x∗), there exist u∗ ∈ U, v∗ ∈ Rq+, and
w∗ ∈ Rr such that D(x∗, u∗) > 0, N(x∗, u∗) ≥ 0, and

p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)] +

q∑
j=1

v∗j∇Gj(x∗) +
r∑

k=1

w∗k∇Hk(x∗) = 0, (2.1)

〈
z∗,
{ p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)] +

q∑
j=1

v∗j∇2Gj(x
∗)

+
r∑

k=1

w∗k∇2Hk(x∗)
}
z∗
〉
≥ 0, (2.2)

u∗i [D(x∗, u∗)fi(x
∗)−N(x∗, u∗)gi(x

∗)] = 0, i ∈ p, (2.3)

max
1≤i≤p

fi(x
∗)

gi(x∗)
=
N(x∗, u∗)

D(x∗, u∗)
, (2.4)

v∗jGj(x
∗) = 0, j ∈ q,

w∗kHk(x∗) ≥ 0, k ∈ r. (2.5)

Assume, furthermore, that any one of the following six sets of conditions holds:

(a) (i) for each i ∈ I+ ≡ I+(u), fi is (ϕ, η, ρ̄i, θ,m)-sonvex and −gi is (ϕ, η, ρ̃i, θ,m)-sonvex at
x∗, ϕ is superlinear, and ϕ(a) ≥ 0⇒ a ≥ 0;

(ii) for each j ∈ J+ ≡ J+(v∗), Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and
ϕ̂j(0) = 0;

(iii) for each k ∈ K∗ ≡ K∗(w
∗), ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗ and

ϕ̆k(0) = 0;

(iv) ρ∗(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F, where ρ∗(x, x∗) =∑
i∈I+ u

∗
i [D(x∗, u∗)ρ̄i(x, x

∗) +N(x∗, u∗)ρ̃i(x, x
∗)];
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(b) (i) for each i ∈ I+, fi is (ϕ, η, ρ̄i, θ,m)-sonvex and −gi is (ϕ, η, ρ̃i, θ,m)-sonvex at x∗, ϕ is
superlinear, and ϕ(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) for each k ∈ K∗, ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗ and ϕ̆k(0) = 0;

(iv) ρ∗(x, x∗) + ρ̂(x, x∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F;

(c) (i) for each i ∈ I+, fi is (ϕ, η, ρ̄i, θ,m)-sonvex and −gi is (ϕ, η, ρ̃i, θ,m)-sonvex at x∗, ϕ is
superlinear, and ϕ(a) ≥ 0⇒ a ≥ 0;

(ii) for each j ∈ J+, Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and ϕ̂j(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗ and ϕ̆(0) = 0;

(iv) ρ∗(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(d) (i) for each i ∈ I+, fi is (ϕ, η, ρ̄i, θ,m)-sonvex and −gi is (ϕ, η, ρ̃i, θ,m)-sonvex at x∗, ϕ is
superlinear, and ϕ(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗ and ϕ̆(0) = 0;

(iv) ρ∗(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(e) (i) for each i ∈ I+, fi is (ϕ, η, ρ̄i, θ,m)-sonvex and −gi is (ϕ, η, ρ̃i, θ,m)-sonvex at x∗, ϕ is
superlinear, and ϕ(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → G(ξ, v∗, w∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ρ∗(x, x∗) + ρ̂(x, x∗) ≥ 0 for all x ∈ F;

(f) the Lagrangian-type function

ξ → L(ξ, x∗, u∗, v∗, w∗) =

p∑
i=1

u∗i [D(x∗, u∗)fi(ξ)−N(x∗, u∗)gi(ξ)]

+

q∑
j=1

v∗jGj(ξ) +
r∑

k=1

w∗kHk(ξ)

is (ϕ, η, ρ, θ,m)-pseudosonvex at x∗, ρ(x, x∗) ≥ 0 for all x ∈ F, and ϕ(a) ≥ 0⇒ a ≥ 0.

Then x∗ is an optimal solution of (P).

Proof. Let x be an arbitrary feasible solution of (P ).
(a) : Using the hypotheses specified in (i), we have for each i ∈ I+,

ϕ
(
fi(x)− fi(x∗)

)
≥ 〈∇fi(x∗), η(x, x∗)〉+

1

2
〈z∗,∇2fi(x

∗)z∗〉+ ρ̄i(x, x
∗)‖θ(x, x∗)‖m
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and

ϕ
(
− gi(x) + gi(x

∗)
)
≥ 〈−∇gi(x∗), η(x, x∗)〉 − 1

2
〈z∗,∇2gi(x

∗)z∗〉+ ρ̃i(x, x
∗)‖θ(x, x∗)‖m.

Inasmuch as D(x∗, u∗) > 0, N(x∗, u∗) ≥ 0, u∗ ≥ 0,
∑p
i=1 u

∗
i = 1, and ϕ is superlinear, we deduce

from the above inequalities that

ϕ
( p∑
i=1

u∗i [D(x∗, u∗)fi(x)−N(x∗, u∗)gi(x)]−
p∑
i=1

u∗i [D(x∗, u∗)fi(x
∗)−N(x∗, u∗)gi(x

∗)]
)

≥
〈 p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)], η(x, x∗)
〉

+
1

2

〈
z∗,

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗

〉
+
∑
i∈I+

u∗i [D(x∗, u∗)ρ̄i(x, x
∗) +N(x∗, u∗)ρ̃i(x, x

∗)]‖θ(x, x∗)‖m. (2.6)

Since x ∈ F and (2.5) holds, it follows from the properties of the functions ϕ̂j that for each
j ∈ J+, ϕ̂j

(
Gj(x)−Gj(x∗)

)
≤ 0 which in view of (ii) implies that

〈∇Gj(x∗), η(x, x∗)〉+
1

2
〈z,∇2Gj(x

∗)z〉 ≤ −ρ̂j(x, x∗)‖θ(x, x∗)‖m.

As v∗j ≥ 0 for each j ∈ q and v∗j = 0 for each j ∈ q\J+ (complement of J+ relative to q), the above
inequalities yield〈 q∑

j=1

v∗j∇Gj(x∗), η(x, x∗)
〉

+
1

2

〈
z∗,

q∑
j=1

v∗j∇2Gj(x
∗)z∗

〉
≤ −

∑
j∈J+

v∗j ρ̂j(x, x
∗)‖θ(x, x∗)‖m. (2.7)

In a similar manner, we can show that (iii) leads to the following inequality:〈 r∑
k=1

w∗k∇Hk(x∗), η(x, x∗)
〉

+
1

2

〈
z∗,

r∑
k=1

w∗k∇2Hk(x∗)z∗
〉
≤ −

∑
k∈K∗

w∗kρ̆k(x, x∗)‖θ(x, x∗)‖m. (2.8)

Now using (2.1), (2.2), and (2.6) - (2.8), we see that

ϕ
( p∑
i=1

u∗i [D(x∗, u∗)fi(x)−N(x∗, u∗)gi(x)]−
p∑
i=1

u∗i [D(x∗, u∗)fi(x
∗)−N(x∗, u∗)gi(x

∗)]
)

≥ −
[〈 q∑

j=1

v∗j∇Gj(x∗), η(x, x∗)
〉

+
1

2

〈
z∗,

q∑
j=1

v∗j∇2Gj(x
∗)z∗

〉
+
〈 r∑
k=1

w∗k∇Hk(x∗), η(x, x∗)
〉

+
1

2

〈
z∗,

r∑
k=1

w∗k∇2Hk(x∗)z∗
〉]

+
∑
i∈I+

u∗i [D(x∗, u∗)ρ̄i(x, x
∗) +N(x∗, u∗)ρ̃i(x, x

∗)]‖θ(x, x∗)‖m (by (2.1), (2.2), and (2.6))
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≥
{∑
i∈I+

u∗i [D(x∗, u∗)ρ̄i(x, x
∗) +N(x∗, u∗)ρ̃i(x, x

∗)] +
∑
j∈J+

v∗j ρ̂j(x, x
∗)

+
∑
k∈K∗

w∗kρ̆k(x, x∗)
}
‖θ(x, x∗)‖m (by (2.7) and (2.8))

≥ 0 (by (iv)).

But ϕ(a) ≥ 0⇒ a ≥ 0, and hence we have

p∑
i=1

u∗i [D(x∗, u∗)fi(x)−N(x∗, u∗)gi(x)] ≥
p∑
i=1

u∗i [D(x∗, u∗)fi(x
∗)−N(x∗, u∗)gi(x

∗)] = 0, (2.9)

where the equality follows from (2.3). Now using (2.4), (2.9) and Lemma 2.1, we see that

ϕ(x∗) =
N(x∗, u∗)

D(x∗, u∗)
≤
∑p
i=1 u

∗
i fi(x)∑p

i=1 u
∗
i gi(x)

≤ max
u∈U

∑p
i=1 uifi(x)∑p
i=1 uigi(x)

= ϕ(x).

Since x ∈ F was arbitrary, we conclude from this inequality that x∗ is an optimal solution of (P ).
(b) : As shown in part (a), for each j ∈ J+, we have Gj(x)−Gj(x∗) ≤ 0, and hence using the

properties of the function ϕ̂, we get

ϕ̂
( q∑
j=1

v∗jGj(x)−
q∑
j=1

v∗jGj(x
∗)
)
≤ 0,

which in view of (ii) implies that

〈 q∑
j=1

v∗j∇Gj(x∗), η(x, x∗)
〉

+
1

2

〈
z∗,

q∑
j=1

v∗j∇2Gj(x
∗)z∗

〉
≤ −ρ̂(x, x∗)‖θ(x, x∗)‖m.

Now proceeding as in the proof of part (a) and using this inequality instead of (2.7), we arrive at
(2.9), which leads to the desired conclusion that x∗ is an optimal solution of (P ).

(c) - (e) : The proofs are similar to those of parts (a) and (b).
(f) : Since ρ(x, x∗) ≥ 0, (2.1) and (2.2) yield

〈∇L(x∗, x∗, u∗, v∗, w∗), η(x, x∗)〉+
1

2
〈z∗,∇2L(x∗, x∗, u∗, v∗, w∗)z∗〉

≥ 0 ≥ −ρ(x, x∗)‖θ(x, x∗)‖m,

which in view of our (ϕ, η, ρ, θ,m)-pseudosonvexity assumption implies that

ϕ
(
L(x, x∗, u∗, v∗, w∗)− L(x∗, x∗, u∗, v∗, w∗)

)
≥ 0.

But ϕ(a) ≥ 0⇒ a ≥ 0 and hence we have

L(x, x∗, u∗, v∗, w∗) ≥ L(x∗, x∗, u∗, v∗, w∗).
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Because x, x∗ ∈ F, v∗ ≥ 0, and (2.3) and (2.5) hold, the right-hand side of the above inequality is
equal to zero, and so we get

p∑
i=1

u∗i [D(x∗, u∗)fi(x)−N(x∗, u∗)gi(x)] ≥ 0,

which is precisely (2.9). As seen in the proof of part (a), this inequality leads to the desired
conclusion that x∗ is an optimal solution of (P ). q.e.d.

In Theorem 2.1, separate (ϕ, η, ρ, θ,m)-sonvexity assumptions were imposed on the functions fi
and −gi, i ∈ p. It is possible to establish a great variety of additional sufficient optimality results in
which various generalized (ϕ, η, ρ, θ,m)-sonvexity requirements are placed on certain combinations
of these functions. In the remainder of this paper, we shall discuss a series of sufficiency theorems in
which appropriate generalized (ϕ, η, ρ, θ,m)-sonvexity assumptions will be imposed on the functions
ξ → Ei(ξ, y, u), i ∈ p, ξ → E(ξ, y, u), Gj , j ∈ q, ξ → C(ξ, v), ξ → Dk(ξ, w), k ∈ r, ξ → D(ξ, w),
and ξ → G(ξ, v, w).

Theorem 2.3. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r,
are twice differentiable at x∗, and that for each z∗ ∈ C(x∗), there exist u∗ ∈ U, v∗ ∈ Rq+, and
w∗ ∈ Rr such that (2.1) - (2.5) hold. Assume, furthermore, that any one of the following five sets
of hypotheses is satisfied:

(a) (i) ξ → E(ξ, x∗, u∗) is (ϕ̄, η, ρ̄, θ,m)-pseudosonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) for each j ∈ J+ ≡ J(v∗), Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and
ϕ̂j(0) = 0;

(iii) for each k ∈ K∗ ≡ K(w∗), ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and
ϕ̆k(0) = 0;

(iv) ρ̄(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F;

(b) (i) ξ → E(ξ, x∗, u∗, λ∗) is (ϕ̄, η, ρ̄, θ,m)-pseudosonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) for each k ∈ K∗, ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and ϕ̆k(0) = 0;

(iv) ρ̄(x, x∗) + ρ̂(x, x∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F;

(c) (i) ξ → E(ξ, x∗, u∗, λ∗) is (ϕ̄, η, ρ̄, θ,m)-pseudosonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) for each j ∈ J+, Gj is (ϕ̂m, η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and ϕ̂j(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ̄(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(d) (i) ξ → E(ξ, x∗, u∗, λ∗) is (ϕ̄, η, ρ̄, θ,m)-pseudosonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;
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(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ̄(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(e) (i) ξ → E(ξ, x∗, u∗, λ∗) is (ϕ̄, η, ρ̄, θ,m)-pseudosonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → G(ξ, v∗, w∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ρ̄(x, x∗) + ρ̂(x, x∗) ≥ 0 for all x ∈ F.

Then x∗ is an optimal solution of (P).

Proof. Let x be an arbitrary feasible solution of (P ).
(a) : In view of our assumptions specified in (ii) and (iii), (2.7) and (2.8) remain valid for the

present case. From (2.1), (2.2), (2.7), (2.8), and (iv) we deduce that

〈 p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)], η(x, x∗)
〉

+
〈
z∗,

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗

〉
≥
[ ∑
j∈J+

v∗j ρ̂j(x, x
∗) +

∑
k∈K∗

ρ̆k(x, x∗)
]
‖θ(x, x∗)‖m

≥ −ρ̄(x, x∗)‖θ(x, x∗)‖m,

which in view of (i) implies that

ϕ̄
(
E(x, x∗, u∗)− E(x∗, x∗, u∗)

)
≥ 0.

Because of the properties of the function ϕ̄, the last inequality yields

E(x, x∗, u∗) = E(x∗, x∗, u∗) = 0,

where the equality follows from (2.3). As shown in the proof of Theorem 2.1, this inequality leads
to the conclusion that x∗ is an optimal solution of (P ).

(b) - (e) : The proofs are similar to that of part (a). q.e.d.

Theorem 2.4. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r,
are twice differentiable at x∗, and that there exist u∗ ∈ U, v∗ ∈ Rq+, and w∗ ∈ Rr such that (2.1) -
(2.5) hold. Assume, furthermore, that any one of the following five sets of hypotheses is satisfied:

(a) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) for each j ∈ J+ ≡ J+(v∗), Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and
ϕ̂j(0) = 0;

(iii) for each k ∈ K∗ ≡ K(w∗), ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and
ϕ̆k(0) = 0;

(iv) ρ̄(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) +
∑
k∈K∗

ρ̆k(x, x∗) > 0 for all x ∈ F;

(b) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;
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(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) for each k ∈ K∗, ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and ϕ̆k(0) = 0;

(iv) ρ̄(x, x∗) + ρ̂(x, x∗) +
∑
k∈K∗

ρ̆k(x, x∗) > 0 for all x ∈ F;

(c) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) for each j ∈ J+, Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and ϕ̂j(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ̄(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) + ρ̆(x, x∗) > 0 for all x ∈ F;

(d) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → C(ξ, w∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ̄(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) > 0 for all x ∈ F;

(e) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → G(ξ, v∗, w∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ρ̄(x, x∗) + ρ̂(x, x∗) > 0 for all x ∈ F.

Then x∗ is an optimal solution of (P).

Proof. Let x be an arbitrary feasible solution of (P ).
(a) : Because of our assumptions specified in (ii) and (iii), (2.7) and (2.8) remain valid for the
present case. From (2.1), (2.2), (2.7), (2.8), and (iv) we deduce that

〈 p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)], η(x, x∗)
〉

+
〈
z∗,

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗

〉
≥
[ ∑
j∈J+

v∗j ρ̂j(x, x
∗) +

∑
k∈K∗

ρ̆k(x, x∗)
]
‖θ(x, x∗)‖m

> −ρ̄(x, x∗)‖θ(x, x∗)‖m,

which in view of (i) implies that

ϕ̄
(
E(x, x∗, u∗)− E(x∗, x∗, u∗)

)
≥ 0.

Because of the properties of the function ϕ̄, the last inequality yields

E(x, x∗, u∗) ≥ E(x∗, x∗, u∗) = 0,

where the equality follows from (2.3). As shown in the proof of Theorem 2.1, this inequality leads
to the conclusion that x∗ is an optimal solution of (P ).

(b) - (e) : The proofs are similar to that of part (a). q.e.d.
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Theorem 2.5. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r,
are twice differentiable at x∗, and that there exist u∗ ∈ U, v∗ ∈ Rq+, and w∗ ∈ Rr such that (2.1) -
(2.5) hold. Assume, furthermore, that any one of the following seven sets of hypotheses is satisfied:

(a) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗ and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) for each j ∈ J+ ≡ J+(v∗), Gj is strictly (ϕ̂j , η, ρ̂j , θ,m)-pseudosonvex at x∗, ϕ̂j is
increasing, and ϕ̂j(0) = 0;

(iii) for each k ∈ K∗ ≡ K∗(w
∗), ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and

ϕ̆k(0) = 0;

(iv) ρ̄(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F;

(b) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗, and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → C(ξ, v∗) is strictly (ϕ̂, η, ρ̂, θ,m)-pseudosonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) for each k ∈ K∗, ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and ϕ̆k(0) = 0;

(iv) ρ̄(x, x∗) + ρ̂(x, x∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F;

(c) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗ and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) for each j ∈ J+, Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and ϕ̂j(0) = 0;

(iii) for each k ∈ K∗, ξ → Dk(ξ, w∗) is strictly (ϕ̆k, η, ρ̆k, θ,m)-pseudosonvex at x∗, and
ϕ̆k(0) = 0;

(iv) ρ̄(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) +
∑
k∈K∗

ρ̆m(x, x∗) ≥ 0 for all x ∈ F;

(d) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗ and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) for each j ∈ J+, ξ → Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and
ϕ̂j(0) = 0;

(iii) ξ → D(ξ, w∗) is strictly (ϕ̆, η, ρ̆, θ,m)-pseudosonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ̄(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(e) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗ and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → C(ξ, v∗) is strictly (ϕ̂, η, ρ̂, θ,m)-pseudosonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ̄(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(f) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗ and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ξ → D(ξ, w∗) is strictly (ϕ̆, η, ρ̆, θ,m)-pseudosonvex at x∗, and ϕ̆(0) = 0;
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(iv) ρ̄(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(g) (i) ξ → E(ξ, x∗, u∗) is prestrictly (ϕ̄, η, ρ̄, θ,m)-quasisonvex at x∗ and ϕ̄(a) ≥ 0⇒ a ≥ 0;

(ii) ξ → G(ξ, v∗, w∗) is strictly (ϕ̂, η, ρ̂, θ,m)-pseudosonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) =
0;

(iii) ρ̄(x, x∗) + ρ̂(x, x∗) ≥ 0 for all x ∈ F.

Then x∗ is an optimal solution of (P).

Proof. (a) : Let x ∈ F be an arbitrary feasible solution of (P ). Since for each j ∈ J+, Gj(x) −
Gj(x

∗) ≤ 0 and hence ϕ̂j
(
Gj(x)−Gj(x∗)

)
≤ 0, (ii) implies that

〈∇Gj(x∗), η(x, x∗)〉+
1

2
〈z,∇2Gj(x

∗)z〉 < −ρ̂j(x, x∗)‖θ(x, x∗)‖m.

As v∗j ≥ 0 for each j ∈ q and v∗j = 0 for each j ∈ q\J+, the above inequalities yield

〈 q∑
j=1

v∗j∇Gj(x∗), η(x, x∗)
〉

+
1

2

〈
z∗,

q∑
j=1

v∗j∇2Gj(x
∗)z∗

〉
< −

∑
j∈J+

v∗j ρ̂j(x, x
∗)‖θ(x, x∗)‖m.

Now combining this inequality with (2.1), (2.2), and (2.8) (which is valid for the present case
because of (iii)), and using (iv), we obtain

〈 p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)], η(x, x∗)
〉

+
1

2

〈
z∗,

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗

〉
≥
[ ∑
j∈J+

v∗j ρ̂j(x, x
∗) +

∑
k∈K∗

ρ̆k(x, x∗)
]
‖θ(x, x∗)‖m

> −ρ̄(x, x∗)‖θ(x, x∗)‖m,

which in view of (i) implies that

ϕ̄
(
E(x, x∗, u∗)− E(x∗, x∗, u∗)

)
≥ 0.

The rest of the proof is identical to that of Theorem 2.1.
(b) - (g) : The proofs are similar to that of part (a). q.e.d.

In Theorems 2.2 - 2.4, various generalized (ϕ, η, ρ, θ,m)-sonvexity conditions were imposed on
the function ξ → E(ξ, x∗, u∗), which is the weighted sum of the functions ξ → Ei(ξ, x∗, u∗), i ∈ p.
In the next few theorems, we shall assume that the individual functions ξ → Ei(ξ, x∗, u∗), i ∈ p,
satisfy appropriate generalized (ϕ, η, ρ, θ,m)-sonvexity hypotheses.

Theorem 2.6. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r,
are twice differentiable at x∗, and that for each z∗ ∈ C(x∗), there exist u∗ ∈ U, v∗ ∈ Rq+, and
w∗ ∈ Rr such that (2.1) - (2.5) hold. Assume, furthermore, that any one of the following five sets
of hypotheses is satisfied:
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(a) (i) for each i ∈ I+ ≡ I+(u∗), ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at
x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;

(ii) for each j ∈ J+ ≡ J+(v∗), Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and
ϕ̂j(0) = 0;

(iii) for each k ∈ K∗ ≡ K∗(w
∗), ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and

ϕ̆k(0) = 0;

(iv) ρ◦(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) +
∑
k∈K∗

ρ̆k(x, x∗) > 0 for all x ∈ F, where ρ◦(x, x∗) =∑
i∈I+ u

∗
i ρ̄i(x, x

∗);

(b) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) for each k ∈ K∗, ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and ϕ̆k(0) = 0;

(iv) ρ◦(x, x∗) + ρ̂(x, x∗) +
∑
k∈K∗

ρ̆m(x, x∗) > 0 for all x ∈ F;

(c) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) for each j ∈ J+, Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and ϕ̂j(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ◦(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) + ρ̆(x, x∗) > 0 for all x ∈ F;

(d) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ◦(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) > 0 for all x ∈ F;

(e) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) ξ → G(ξ, v∗, w∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ρ◦(x, x∗) + ρ̂(x, x∗) > 0 for all x ∈ F.

Then x∗ is an optimal solution of (P).

Proof. (a) : Suppose that x∗ is not an optimal solution of (P ). This implies that there exists
x̄ ∈ F such that for each i ∈ p, Ei(x̄, x∗, u∗) < 0. Since Ei(x∗, x∗, u∗) = 0 by (2.3), it follows that
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Ei(x̄, x∗, u∗) < Ei(x∗, x∗, u∗), and hence for each i ∈ I+, ϕ̄
(
Ei(x̄, x∗, u∗)−Ei(x∗, x∗, u∗)

)
< 0, which

by virtue of (i) implies that

〈D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗), η(x̄, x∗)〉+
1

2
〈z∗, [D(x∗, u∗)∇2fi(x

∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗〉 ≤ −ρ̄i(x̄, x∗)‖θ(x̄, x∗)‖m.

Since u∗ ≥ 0 and
∑p
i=1 u

∗
i = 1, the above inequalities yield

〈 p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)], η(x̄, x∗)
〉

+
1

2

〈
z∗,

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗

〉
] ≤ −

∑
i∈I+

u∗i ρ̄i(x, x
∗)‖θ(x, x∗)‖m. (2.10)

In view of our assumptions set forth in (ii) and (iii), (2.7) and (2.8) hold. Now combining these
inequalities with (2.1) and (2.2), and using (iv), we get

〈 p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)], η(x̄, x∗)
〉

+
1

2

〈
z∗,

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗

〉
≥
[ ∑
j∈J+

v∗j ρ̂j(x, x
∗) +

∑
k∈K∗

ρ̆k(x, x∗)
]
‖θ(x, x∗)‖m

> −
∑
i∈I+

u∗i ρ̄i(x, x
∗)‖θ(x, x∗)‖m,

which contradicts (2.10). Therefore, we conclude that x∗ is an optimal solution of (P ).
(b) - (e) : The proofs are similar to that of part (a). q.e.d.

Theorem 2.7. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r,
are twice differentiable at x∗, and that for each z∗ ∈ C(x∗), there exist u∗ ∈ U, v∗ ∈ Rq+, and
w∗ ∈ Rr such that (2.1) - (2.5) hold. Assume, furthermore, that any one of the following seven sets
of hypotheses is satisfied:

(a) (i) for each i ∈ I+ ≡ I+(u∗), ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at
x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;

(ii) for each j ∈ J+ ≡ J+(v∗), Gj is strictly (ϕ̂j , η, ρ̂j , θ,m)-pseudosonvex at x∗, ϕ̂j is
increasing, and ϕ̂j(0) = 0;

(iii) for each k ∈ K∗ ≡ K∗(w
∗), ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and

ϕ̆k(0) = 0;

(iv) ρ◦(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F, where ρ◦(x, x∗) =∑
i∈I+ u

∗
i ρ̄i(x, x

∗);

(b) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;
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(ii) for each j ∈ J+, Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and ϕ̂j(0) = 0;

(iii) for each k ∈ K∗, ξ → Dk(ξ, w∗) is strictly (ϕ̆k, η, ρ̆k, θ,m)-pseudosonvex at x∗, and
ϕ̆k(0) = 0;

(iv) ρ◦(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F;

(c) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) ξ → C(ξ, v∗) is strictly (ϕ̂, η, ρ̂, θ,m)-pseudosonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) for each k ∈ K∗, ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and ϕ̆k(0) = 0;

(iv) ρ◦(x, x∗) + ρ̂(x, x∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F;

(d) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) for each j ∈ J+, Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and ϕ̂j(0) = 0;

(iii) ξ → D(ξ, w∗) is strictly (ϕ̆, η, ρ̆, θ,m)-pseudosonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ◦(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(e) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) ξ → C(ξ, v∗) is strictly (ϕ̂, η, ρ̂, θ,m)-pseudosonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ◦(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(f) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ξ → D(ξ, w∗) is strictly (ϕ̆, η, ρ̆, θ,m)-pseudosonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ◦(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(g) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is prestrictly (ϕ̄i, η, ρ̄i, θ,m)-quasisonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) ξ → G(ξ, v∗, w∗) is strictly (ϕ̂, η, ρ̂, θ,m)-pseudosonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) =
0;

(iii) ρ◦(x, x∗) + ρ̂(x, x∗) ≥ 0 for all x ∈ F.

Then x∗ is an optimal solution of (P).

Proof. The proof is similar to that of Theorem 2.4. q.e.d.
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Theorem 2.8. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r,
are twice differentiable at x∗, and that for each z∗ ∈ C(x∗), there exist u∗ ∈ U, v∗ ∈ Rq+, and
w∗ ∈ Rr such that (2.1) - (2.5) hold. Assume, furthermore, that any one of the following five sets
of hypotheses is satisfied:

(a) (i) for each i ∈ I+ ≡ I+(u∗), ξ → Ei(ξ, x∗, u∗) is (ϕ̄i, η, ρ̄i, θ,m)-pseudosonvex at x∗, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;

(ii) for each j ∈ J+ ≡ J+(v∗), Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and
ϕ̂j(0) = 0;

(iii) for each k ∈ K∗ ≡ K∗(w
∗), ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and

ϕ̆k(0) = 0;

(iv) ρ◦(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) +
∑
k∈K∗

ρ̆k(x, x∗) ≥ 0 for all x ∈ F, where ρ◦(x, x∗) =∑
i∈I+ u

∗
i ρ̄i(x, x

∗);

(b) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is (ϕ̄i, η, ρ̄i, θ,m)-pseudosonvex at x∗, ϕ̄i is strictly
increasing, and ϕ̄i(0) = 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) for each k ∈ K∗, ξ → Dk(ξ, w∗) is (ϕ̆k, η, ρ̆k, θ,m)-quasisonvex at x∗, and ϕ̆k(0) = 0;

(iv) ρ◦(x, x∗) + ρ̂(x, x∗) +
∑
k∈K∗

ρ̆m(x, x∗) ≥ 0 for all x ∈ F;

(c) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is (ϕ̄i, η, ρ̄i, θ,m)-pseudosonvex at x∗, ϕ̄i is strictly
increasing, and ϕ̄i(0) = 0;

(ii) for each j ∈ J+, Gj is (ϕ̂j , η, ρ̂j , θ,m)-quasisonvex at x∗, ϕ̂j is increasing, and ϕ̂j(0) = 0;

(iii) ξ → D(ξ, w∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ◦(x, x∗) +
∑
j∈J+ v

∗
j ρ̂j(x, x

∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(d) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is (ϕ̄i, η, ρ̄i, θ,m)-pseudosonvex at x∗, ϕ̄i is strictly
increasing, and ϕ̄i(0) = 0;

(ii) ξ → C(ξ, v∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ξ → D(ξ, v∗) is (ϕ̆, η, ρ̆, θ,m)-quasisonvex at x∗, and ϕ̆(0) = 0;

(iv) ρ◦(x, x∗) + ρ̂(x, x∗) + ρ̆(x, x∗) ≥ 0 for all x ∈ F;

(e) (i) for each i ∈ I+, ξ → Ei(ξ, x∗, u∗) is (ϕ̄i, η, ρ̄i, θ,m)-pseudosonvex at x∗, ϕ̄i is strictly
increasing, and ϕ̄i(0) = 0;

(ii) ξ → G(ξ, v∗, w∗) is (ϕ̂, η, ρ̂, θ,m)-quasisonvex at x∗, ϕ̂ is increasing, and ϕ̂(0) = 0;

(iii) ρ◦(x, x∗) + ρ̂(x, x∗) ≥ 0 for all x ∈ F.

Then x∗ is an optimal solution of (P).
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Proof. (a) : Suppose that x∗ is not an optimal solution of (P ). This implies that there exists x̄ ∈ F
such that for each i ∈ p, fi(x̄)−λ∗gi(x̄) < 0 and hence ϕ̄i

(
Ei(x̄, x∗, u∗)−Ei(x∗, x∗, u∗)

)
< 0 because

Ei(x∗, x∗, u∗) = 0 by (2.3). In view of (i), this implies that for each i ∈ I+, we have

〈D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗), η(x̄, x∗)〉+
1

2
〈z∗, [D(x∗, u∗)∇2fi(x

∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗〉 < −ρ̄i(x̄, x∗)‖θ(x̄, x∗)‖m.

Since u∗ ≥ 0 and
∑p
i=1 u

∗
i = 1, the above inequalities yield

〈 p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)], η(x̄, x∗)
〉

+
1

2

〈
z∗,

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗

〉
< −

∑
i∈I+

u∗i ρ̄i(x̄, x
∗)‖θ(x̄, x∗)‖m. (2.11)

Now combining this inequality with (2.7) and (2.8), which are valid for the present case because of
the assumptions set forth in (ii) and (iii), and using (iv), we get

〈 p∑
i=1

u∗i [D(x∗, u∗)fi(x
∗)−N(x∗, u∗)∇gi(x∗)], η(x̄, x∗)

〉
+

1

2

〈
z∗,

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗

〉
≥
[ ∑
j∈J+

v∗j ρ̂j(x, x
∗) +

∑
k∈K∗

ρ̆k(x, x∗)
]
‖θ(x̄, x∗)‖m

≥ −
∑
i∈I+

ρ̄i(x̄, x
∗)‖θ(x̄, x∗)‖m,

which contradicts (2.11). Therefore, we conclude that x∗ is an optimal solution of (P ).
(b) - (e) : The proofs are similar to that of part (a). q.e.d.

In the remainder of this section, we briefly discuss certain modifications of Theorems 2.1 - 2.7
obtained by replacing (2.1) with a certain inequality. We begin by stating the following variant of
Theorem 2.1; its proof is almost identical to that of Theorem 2.1 and hence omitted.

Theorem 2.9. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r,
are twice differentiable at x∗, and that for each z∗ ∈ C(x∗), there exist u∗ ∈ U, v∗ ∈ Rq+, and
w∗ ∈ Rr such that (2.2) - (2.5) and the following inequality hold:

〈 p∑
i=1

u∗i [D(x∗, u∗)∇fi(x∗)−N(x∗, u∗)∇gi(x∗)] +

q∑
j=1

v∗j∇Gj(x∗)

+
r∑

k=1

w∗k∇Hk(x∗), η(x, x∗)
〉
≥ 0 for all x ∈ F, (2.12)

where η : X × X → Rn is a given function. Furthermore, assume that any one of the six sets of
conditions specified in Theorem 2.1 is satisfied. Then x∗ is an optimal solution of (P ).
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Although the proofs of Theorems 2.1 and 2.8 are essentially the same, their contents are some-
what different. This can easily be seen by comparing (2.1) with (2.12). We observe that any triple
(x∗, z∗, λ∗) that satisfies (2.1) - (2.5) also satisfies (2.2) - (2.5) and (2.12), but the converse is not
necessarily true. Moreover, (2.1) is a system of n equations, whereas (2.12) is a single inequal-
ity. Evidently, from a computational point of view, (2.1) is preferable to (2.12) because of the
dependence of the latter on the feasible set of (P ).

The modified versions of Theorems 2.2 - 2.7 can be stated in a similar manner.

3 Concluding remarks

Based on a direct nonparametric approach, in this paper we have established numerous sets of
parameter-free second-order sufficient optimality criteria for a discrete minmax fractional program-
ming problem using a variety of generalized (ϕ, η, ρ, θ,m)-sonvexity assumptions. These optimality
results can be used for constructing various duality models as well as for developing new algorithms
for the numerical solution of discrete minmax fractional programming problems. Furthermore, the
obtained results in this paper can be applied in studying other related classes of nonlinear pro-
gramming problems, especially to the second-order sufficient optimality aspects of the following
’semiinfinite’ minmax fractional programming problem:

Minimize max
1≤i≤p

fi(x)

gi(x)

subject to
Gj(x, t) ≤ 0 for all t ∈ Tj , j ∈ q,

Hk(x, s) = 0 for all s ∈ Sk, k ∈ r,

x ∈ X,

where X, fi, and gi, i ∈ p, are as defined in the description of (P ), for each j ∈ q and k ∈ r, Tj
and Sk are compact subsets of complete metric spaces, for each j ∈ q, ξ → Gj(ξ, t) is a real-valued
function defined on X for all t ∈ Tj , for each k ∈ r, ξ → Hk(ξ, s) is a real-valued function defined
on X for all s ∈ Sk, for each j ∈ q and k ∈ r, t → Gj(x, t) and s → Hk(x, s) are continuous
real-valued functions defined, respectively, on Tj and Sk for all x ∈ X.
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